A hierarchical sparsity-smoothness Bayesian model for ℓ0 + ℓ1 + ℓ2 regularization

نویسندگان

  • Lotfi Chaâri
  • Hadj Batatia
  • Nicolas Dobigeon
  • Jean-Yves Tourneret
چکیده

Sparse signal/image recovery is a challenging topic that has captured a great interest during the last decades. To address the ill-posedness of the related inverse problem, regularization is often essential by using appropriate priors that promote the sparsity of the target signal/image. In this context, `0 + `1 regularization has been widely investigated. In this paper, we introduce a new prior accounting simultaneously for both sparsity and smoothness of restored signals. We use a Bernoulli-generalized Gauss-Laplace distribution to perform `0+`1+`2 regularization in a Bayesian framework. Our results show the potential of the proposed approach especially in restoring the non-zero coefficients of the signal/image of interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-sparse beamforming for spatially extended sources in a Bayesian formulation.

Direction-of-arrival (DOA) estimation refers to the localization of sound sources on an angular grid from noisy measurements of the associated wavefield with an array of sensors. For accurate localization, the number of angular look-directions is much larger than the number of sensors, hence, the problem is underdetermined and requires regularization. Traditional methods use an ℓ2-norm regulari...

متن کامل

s-SMOOTH: Sparsity and Smoothness Enhanced EEG Brain Tomography

EEG source imaging enables us to reconstruct current density in the brain from the electrical measurements with excellent temporal resolution (~ ms). The corresponding EEG inverse problem is an ill-posed one that has infinitely many solutions. This is due to the fact that the number of EEG sensors is usually much smaller than that of the potential dipole locations, as well as noise contaminatio...

متن کامل

A Noise-Robust Method with Smoothed ℓ1/ℓ2 Regularization for Sparse Moving-Source Mapping

The method described here performs blind deconvolution of the beamforming output in the frequency domain. To provide accurate blind deconvolution, sparsity priors are introduced with a smoothed `1/`2 regularization term. As the mean of the noise in the power spectrum domain depends on its variance in the time domain, the proposed method includes a variance estimation step, which allows more rob...

متن کامل

Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.

We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ1 and ℓ2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algori...

متن کامل

Bayesian Sparsity for Intractable Distributions

Bayesian approaches for single-variable and group-structured sparsity outperform L1 regularization, but are challenging to apply to large, potentially intractable models. Here we show how noncentered parameterizations, a common trick for improving the efficiency of exact inference in hierarchical models, can similarly improve the accuracy of variational approximations. We develop this with two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014